Preserving Groundwater Recharge

Managing Stormwater as a Valuable Resource

Paul Susca
NH Department of Environmental Services

- It's a local flooding nuisance
 - Solution: Get rid of it (curbs & gutters)!
- It carries sediment and contributes to drainage basin **flooding**
 - Solution: Treatment, detention, slow release
- **X** It should be recharging groundwater
 - Solution: Retention and infiltration

WATER BALANCE

- Replenishes Groundwater
 - Water supply
 - Industrial, agricultural withdrawals
- Supplies Baseflow
 - Habitat for fish, etc.
 - Recreation
 - Wastewater assimilation

- Visibly impacted
- Channel size doubled
- Tree roots exposed
- Pool and riffle structure lost

Impervious Cover/Stormwater Impacts on Stream Habitat

- * Water quality
- * Wetted perimeter, baseflow volume
- * Temperatures increase
- * Less large woody debris
- Loss of shade along banks
- Results: loss of diversity

- NH fastest growing state in Northeast
 - •264,000 (29%) more people 1990-98
 - **▶55%** more housing units
 - Another 342,800 by 2020
- 🗯 Sprawl
 - 20,000 acres of forest, farmland, and open space lost each year
 - Stormwater impacts?

- Detention/treatment
 - Detention ponds
 - Constructed wetlands
- * Natural Infiltration
 - Grassed swales
 - Buffer strips
 - Filter strips
- * Artificial Infiltration
 - Trenches
 - Ponds
 - Galleries

Porous design minimizes impervious area

Artificial Infiltration BMPs

Infiltration Trench

Artificial Infiltration BMPs

Artificial Infiltration BMPs Why they can fail

- Siting
 - Inadequate percolation rates
 - High water table
 - High sediment loads
- Design
 - Inadequate modifications for cold climates
 - Inadequate pre-treatment
- **Construction** and site stabilization
- Rost-construction clean-up
- **Maintenance**

Guidance Document

- * Why groundwater recharge is important
- * Call to action: stormwater infiltration
- Need for local programs
- Elements of local programs
- **Examples**
- ** Low-Impact Development appendix

Elements of Local Programs to enable Artificial Infiltration

Local Program Elements Needed	Small Projects	DES- Permitted Projects
Siting	X	
Design	X	
Monitoring, Maintenance	X	X
Financial Assurance	X	X

- Minimize impervious area through design
- * Maximize opportunities for infiltration
 - Low impact development principles
 - Natural treatment and infiltration
 - Artificial treatment and infiltration*

*where local programs can ensure that they will continue to function as intended

